Article ID Journal Published Year Pages File Type
787206 International Journal of Refrigeration 2011 10 Pages PDF
Abstract

The theoretical behaviour of an ejector cooling system, using as working fluids propane, butane, isobutane, R152a and R134a, is obtained. The ejector works as a thermo-compressor that is simulated with a validated one-dimensional mathematical model, whose errors are lower than 6%. For a system unitary cooling capacity, a parametric study is carried out varying the generation, condensation and evaporation temperatures. From the obtained data, a complete analysis of the system performance can be achieved when the ejector and system operation parameters are considered. The best performance corresponds to the system using propane, because has the highest system coefficient of performance and its ejector has the maximum entrainment ratio value, the least area ratio value and the highest efficiency value. The considered generation temperature ranging from 70 °C to 95 °C is appropriate for low-grade energy sources assisting thermal cooling systems. After this system performance, come those in which R152a and R134a are employed, with isobutane and butane at the end. The obtained results represent potential design points of an efficient ejector cooling system operation, because to each combination of the above mentioned temperatures corresponds one and only one ejector geometry.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,