Article ID Journal Published Year Pages File Type
787526 International Journal of Pressure Vessels and Piping 2009 9 Pages PDF
Abstract

Stress-based life prediction techniques are commonly used to estimate the failure life of pressurised pipe-related components, such as welds and bends, under creep conditions. Previous research has shown that reasonable life predictions can be obtained, based on the steady-state peak stresses, compared with the life predictions obtained from creep damage modelling. In this work, a series of parametric steady-state peak rupture stress functions of right-angled pipe bends with ovality are presented, which are based on the results obtained from finite element (FE) analyses, covering a number of material property and geometry parameters in practical ranges. Methods used to determine the stress functions are described. The FE analyses have been performed using axisymmetric models, subjected to internal pressure only, with a Norton creep law. Typical examples of parametric peak stress curve fitting are shown. In particular, the accuracy of the interpolation and extrapolation abilities of the stress functions is assessed. The results show that in most cases the interpolated and extrapolated peak stresses are accurate to within ±3% and ±5%, respectively.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,