Article ID Journal Published Year Pages File Type
787584 International Journal of Plasticity 2008 13 Pages PDF
Abstract

A new computationally efficient database approach to fully plastic Taylor-type crystal plasticity calculations is presented in this paper. In particular, we explore strategies that circumvent the need to repeatedly solve sets of highly non-linear, extremely stiff, algebraic equations with poor convergence characteristics that are inherent to these calculations. The suggested strategies consist of computing only once all of the needed variables in crystal plasticity calculations, storing them, and retrieving the values of interest according to the need in any specific simulation. An algorithm is presented here that facilitates this approach, and involves local spectral interpolation using discrete fourier transform (DFT) methods. The approach described here results in major improvements in the computational time over both the conventional crystal plasticity calculations and our previously developed spectral approach using generalized spherical harmonics (GSH). Details of this new approach are described and validated in this paper through a few example case studies.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,