Article ID Journal Published Year Pages File Type
787622 International Journal of Plasticity 2008 19 Pages PDF
Abstract

Deformation induced dislocation microstructures appear in Face-Centred Cubic metals and alloys if applying large enough tensile/cyclic strain. These microstructures are composed of a soft phase with a low dislocation density (cell interiors, channels…) and a hard phase with a high dislocation density (walls). It is well known that these dislocation microstructures induce backstresses, which give kinematic hardening at the macroscopic scale. A simple two-phase localization rule is applied for computing these intragranular backstresses. This is based on Eshelby’s inclusion problem and the Berveiller–Zaoui approach. It takes into account an accommodation factor. Close-form formulae are given and permit the straightforward computation of reasonable backstress values even for large plastic strains. Predicted backstress values are compared to a number of backstress experimental measurements on single crystals. The agreement of the model with experiments is encouraging. This physical intragranular kinematic hardening model can easily be implemented in a polycrystalline homogenization code or in a crystalline finite element code. Finally, the model is discussed with respect to the possible plastic glide in walls and the use of enhanced three phase localization models.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,