Article ID Journal Published Year Pages File Type
787895 International Journal of Pressure Vessels and Piping 2009 11 Pages PDF
Abstract

A strong geometry dependence of ductile crack growth resistance emerges under large scale yielding. The geometry dependence is associated with different levels of crack tip constraint conditions. However, in a recent attempt to identify appropriate fracture mechanics specimens for pipeline steels, an “independent” relationship between the crack growth resistance curves and crack depths for SENT specimens has been observed experimentally. In this paper, we use the complete Gurson model to study the effects of crack depth and specimen size on ductile crack growth behavior. Crack growth resistance curves for plane strain, mode I crack growth under large scale yielding conditions have been computed. SENB and SENT specimens with three different specimen sizes, each specimen size with three different crack depths, have been selected. It has been found that crack tip constraint (Q-parameter) has a weak dependence on the crack depth for specimens in the low constraint regime.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , ,