Article ID Journal Published Year Pages File Type
7879752 Acta Materialia 2015 12 Pages PDF
Abstract
As only a minute sample could be produced in the anvil cell, a conventional structural determination with neutron diffraction on a deuterated sample could not be made. Instead formation energies of the all proposed structural models were calculated using density functional theory (DFT) for accessing the most stable structure of the lowest energy level. The measured lattice parameters and the refined atomic positional parameters from the powder X-ray diffraction pattern were reproduced well by the DFT calculation. The hydrogen atoms were found to fully occupy an octahedral site coordinated by 3Mg and 3Zr atoms, a tetrahedral site coordinated by 4Zr atoms and another tetrahedral site coordinated by 3Mg and 1Zr atoms. Chemical, mechanical and dynamical stabilities of the MgZr2H6 structure were further discussed based on a chemical potential equilibrium diagram constructed from the calculated formation energies, calculated elastic constants and phonon spectra respectively. It is also shown that a high pressure increases the stability of the new hydrides.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,