Article ID Journal Published Year Pages File Type
788036 International Journal of Non-Linear Mechanics 2011 10 Pages PDF
Abstract

Non-linear free and forced vibrations of doubly curved isotropic shallow shells are investigated via multi-modal Galerkin discretization and the method of multiple scales. Donnell’s non-linear shallow shell theory is used and it is assumed that the shell is simply supported with movable edges. By deriving two different forms of the stress function, the equations of motion are reduced to a system of infinite non-linear ordinary differential equations with quadratic and cubic non-linearities. A quadratic relation between the excitation and the fundamental frequency is considered and it is shown that, although in case of hardening non-linearities the results resemble those found via numerical integration or continuation softwares, in case of softening non-linearity the solution breaks down as the amplitude becomes larger than the thickness. Results reveal that, expressing the relation between the excitation and fundamental frequency in this form, which was considered by many researchers as a useful tool in analyzing strong non-linear oscillators, yields in spurious results when the non-linearity becomes of softening type.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,