Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7881042 | Acta Materialia | 2014 | 10 Pages |
Abstract
A powder mixture of Nb-47 wt.% Ti (a well-known composition for superconducting magnets) was subjected to severe plastic deformation using high-pressure torsion (HPT) and subsequently annealed at 573 K. Ti gradually dissolved in Nb with increasing shear strain, with a fast kinetics comparable to lattice diffusion at 700-1200 K. At large strains, a complete transition to a nanostructured β phase occurred at room temperature, which is far below the equilibrium temperature of 690 K. Nanoclusters of Ti with a body-centered cubic structure were also detected at large strains. Subsequent annealing led to elemental decomposition, formation of a nanoscale lamellar structure and segregation of Nb at grain boundaries. Superconductivity occurred at temperatures below 9 K, while the transition temperature decreased with increasing shear strain because of supersaturation of Ti in Nb and increased with annealing because of elemental decomposition. The Nb-Ti alloy after HPT exhibited hardness/strength peaks followed by softening at large strains, while hardening occurred after annealing. The maximum hardness, tensile and bending strengths were 4, 1.7 and 2.7 GPa, respectively.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Kaveh Edalati, Takeshi Daio, Seungwon Lee, Zenji Horita, Terukazu Nishizaki, Tadahiro Akune, Tsutomu Nojima, Takahiko Sasaki,