Article ID Journal Published Year Pages File Type
788132 Journal of Applied Mathematics and Mechanics 2011 11 Pages PDF
Abstract

Two-dimensional recurrence resolvents for an inhomogeneous thin body (plates of variable thickness and shells) are derived by an asymptotic method based on the three-dimensional equations of the coupled dynamic problem of the thermoelasticity of an anisotropic body, which are solved in the case of anisotropy, having, at each point, one plane of symmetry perpendicular to the transverse axis. Recurrence formulae are derived in a general formulation for determining the components of the stress tensor, the strain vector and the function of the change in the temperature field, when different boundary conditions of dynamic problems of the theory of coupled thermoelasticity and thermal conductivity are given on the end surfaces of a thin body. An algorithm for determining the analytical and numerical (necessary) solutions of these boundary-value problems with an arbitrarily specified accuracy is developed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,