Article ID Journal Published Year Pages File Type
7881552 Acta Materialia 2014 7 Pages PDF
Abstract
Using a combination of experiments and density functional theory (DFT), we demonstrate the first example of vacancy-induced toughening, in this case for epitaxial pseudobinary NaCl-structure substoichiometric V0.5Mo0.5Nx alloys, with N concentrations 0.55 ⩽ x ⩽ 1.03, grown by reactive magnetron sputter deposition. The nanoindentation hardness H(x) increases with increasing vacancy concentration from 17 GPa with x = 1.03 to 26 GPa with x = 0.55, while the elastic modulus E(x) remains essentially constant at 370 GPa. Scanning electron micrographs of indented regions show ductile plastic flow giving rise to material pile-up, rather than cracks as commonly observed for hard, but brittle, transition-metal nitrides. The increase in alloy hardness with an elastic modulus that remains constant with decreasing x, combined with the observed material pile-up around nanoindents, DFT-calculated decrease in shear to bulk moduli ratios, and increased Cauchy pressures (C12-C44), reveals a trend toward vacancy-induced toughening. Moreover, DFT crystal orbital overlap population analyses are consistent with the above results.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , ,