Article ID Journal Published Year Pages File Type
788167 International Journal of Non-Linear Mechanics 2009 13 Pages PDF
Abstract

Stress wave propagation through a Functionally Graded Foam Material (FGFM) is analysed in this paper using the finite element method. A finite element model of the Split Hopkinson Pressure Bar (SHPB) is developed to apply realistic boundary conditions to a uniform density foam and is validated against laboratory SHPB tests. Wave propagation through virtual FGFMs with various gradient functions is then considered. The amplitude of the stress wave is found to be shaped by the gradient functions, i.e., the stress can be amplified or diminished following propagation through the FGFMs. The plastic dissipation energy in the specimens is also shaped by the gradient functions. This property of FGFMs provides significant potential for such materials to be used for cushioning structures.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,