Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
788172 | International Journal of Non-Linear Mechanics | 2009 | 12 Pages |
In this paper, we study strongly nonlinear axisymmetric waves in a circular cylindrical rod composed of a compressible Mooney–Rivlin material. To consider the travelling wave solutions for the governing partial differential system, we first reduce it to a nonlinear ordinary differential equation. By using the bifurcation theory of planar dynamical systems, we show that the reduced system has seven periodic annuluses with different boundaries which depend on four parameters. We further consider the bifurcation behavior of the phase portraits for the reduced one-parameter vector fields when other three parameters are fixed. Corresponding to seven different periodic annuluses, we obtain seven types of travelling wave solutions, including solitary waves of radial contraction, solitary waves of radial expansion, solitary shock waves of radial contraction, solitary shock waves of radial expansion, periodic waves and two types of periodic shock waves. These are physically acceptable solutions by the governing partial differential system. The rigorous parameter conditions for the existence of these waves are given.