Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7882535 | Acta Materialia | 2014 | 7 Pages |
Abstract
Titanium in the form of bulk and powder was processed by severe plastic deformation using high-pressure torsion (HPT) at cryogenic and room temperatures to investigate the influence of grain size on allotropic phase transformations. Almost a complete α (hexagonal close-packed, hcp) to Ï (hexagonal) phase transformation occurred under a pressure of 6 GPa at room temperature until the grain size reached the submicrometer level, while the formation of β (body-centered cubic, bcc) phase was not detected. The Ï-phase fraction and the Ï â α transition temperature decreased with processing at cryogenic temperatures and/or with using powders, i.e. with decreasing the grain size to the nanometer scale during the deformation. First-principles calculations found the β phase to be dynamically unstable (neither stable nor metastable), while both α and Ï phases are dynamically stable at 0 and 6 GPa. This explains why the β phase was not detected in this study using different methods such as X-ray diffraction analysis, high-resolution transmission electron microscopy, automated crystal orientation mapping and electrical resistivity measurements. Mechanical properties of the HPT-processed Ti were also examined.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Kaveh Edalati, Takeshi Daio, Makoto Arita, Seungwon Lee, Zenji Horita, Atsushi Togo, Isao Tanaka,