Article ID Journal Published Year Pages File Type
788254 International Journal of Non-Linear Mechanics 2008 10 Pages PDF
Abstract

In the ATP synthase, transmission of energy from the membrane-embedded F0 sector to the catalytic F1 sector is accomplished by two stalks composed of coiled-coils. The great efficiency of the enzyme, despite the presence of a symmetry mismatch between the F1 and F0 sectors, suggests the involvement of elastic elements that store energy during the catalytic cycle. Here, the stalk subunits γγ and b are investigated as the source of this elastic compliance using a continuum mechanical model of coiled-coils and energy arguments. The analysis shows that the compliance of both subunits is required for efficient energy transmission between F0 and F1. In addition, the predicted mechanical properties of coiled-coils in the ATP synthase suggest mechanisms whereby regulatory subunits influence the enzyme activity.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,