Article ID Journal Published Year Pages File Type
788256 International Journal of Non-Linear Mechanics 2008 12 Pages PDF
Abstract
DNA looping plays a key role in the regulation of the lac operon in Escherichia coli. The presence of a tightly bent loop (between sequentially distant sites of Lac repressor protein binding) purportedly hinders the binding of RNA polymerase and subsequent transcription of the genetic message. The unexpectedly favorable binding interaction of this protein-DNA assembly with the catabolic activator protein (CAP), a protein that also bends DNA and paradoxically facilitates the binding of RNA polymerase, stimulated extension of our base-pair level theory of DNA elasticity to the treatment of DNA loops formed in the presence of several proteins. Here we describe in detail a procedure to determine the structures and free energies of multi-protein-DNA assemblies and illustrate the predicted effects of CAP binding on the configurations of the wild-type 92-bp Lac repressor-mediated O3-O1 DNA loop. We show that the DNA loop adopts an antiparallel orientation in the most likely structure and that this loop accounts for the published experimental observation that, when CAP is bound to the loop, one of the arms of LacR binds to an alternative site that is displaced from the original site by 5 bp.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,