Article ID Journal Published Year Pages File Type
788263 Journal of Applied Mathematics and Mechanics 2008 9 Pages PDF
Abstract

The stability in the first approximation of the rotation of a satellite about a centre of mass is investigated. In the unperturbed motion the satellite performs, in absolute space, three rotations around the normal to the orbital plane in a time equal to two periods of rotation of its centre of mass in the orbit (Mercury-type rotation). Three cases of such rotations are considered: the rotations of a dynamically symmetrical satellite and a satellite, the central ellipsoid of inertia of which is close to a sphere, in an elliptic orbit of arbitrary eccentricity, and the rotation of a satellite with three different principal central moments of inertia in a circular orbit.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,