Article ID Journal Published Year Pages File Type
7882674 Acta Materialia 2014 10 Pages PDF
Abstract
The magnetic and crystallographic microstructures in Fe2.5Zn0.5O4 (FZO) wires fabricated using nano-imprint lithography, pulsed laser deposition and a molybdenum lift-off mask technique were studied by transmission electron microscopy (TEM). A process using a focused ion beam completely separated the FZO wires from the insulating MgO substrate, and accordingly allowed in-depth TEM studies of the domain structures. Observations using energy-filtered TEM demonstrated good crystallinity of the FZO wires. Both Lorentz microscopy and electron holography studies revealed unexpectedly small magnetic domains (∼100 nm or smaller) due to a significant interaction with antiphase boundaries. The role of antiphase boundaries on the functionalities observed in the constrained wires (e.g., nonlinear I-V characteristics and large magnetoresistance) is discussed on the basis of these microscopic observations.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , ,