Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7882694 | Acta Materialia | 2014 | 15 Pages |
Abstract
Six alloys were directionally solidified at low growth speeds (1-5 μm sâ1) under a weak transverse magnetic field (⩽0.5 T). The results show that the application of a weak transverse magnetic field significantly modified the solidification structure. Indeed, it was found that, along with the refinement of cells/dendrites, the magnetic field caused the deformation of liquid-solid interfaces, extensive segregations (i.e., freckles and channels) in the mushy zone, and a change in the mushy zone length. Further, in situ monitoring of the initial transient of the directional solidification was carried out by means of synchrotron X-ray radiography. It was observed that dendrite fragments and equiaxed grains were moved approximately along the direction perpendicular to the magnetic field. This result shows that a thermoelectric magnetic force (TEMF) acted on the liquid or the solid during directional solidification under a weak magnetic field. The TEMF during directional solidification under a transverse magnetic field was investigated numerically. The results reveal that a unidirectional TEMF acted on the solid and induced thermoelectric magnetic convection (TEMC) in the liquid. Modification of the solidification structure under a weak magnetic field is attributed to TEMC-driven heat transfer and interdendritic solute transport and TEMF-driven motion of dendrite fragments.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
X. Li, Y. Fautrelle, A. Gagnoud, D. Du, J. Wang, Z. Ren, H. Nguyen-Thi, N. Mangelinck-Noel,