Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
788297 | International Journal of Non-Linear Mechanics | 2008 | 12 Pages |
Many civil and mechanical structures exhibit hysteresis with degradation and/or pinching when subject to severe cyclic loadings such as earthquakes, wind, or sea waves. The modeling and identification of non-linear hysteretic systems with degradation and pinching is therefore a practical problem encountered in the engineering mechanics field. On-line identification of degrading and pinching hysteretic systems is quite a challenging problem because of its complexity. A recently developed technique, the unscented Kalman filter (UKF) which is capable of handling any functional non-linearity, is applied to the on-line parametric system identification of hysteretic differential models with degradation and pinching. Simulation results show that the UKF is efficient and effective for the real-time state estimation and parameter identification of highly non-linear hysteretic systems with degradation and pinching.