Article ID Journal Published Year Pages File Type
7883020 Acta Materialia 2012 15 Pages PDF
Abstract
The fatigue behavior of the nickel-base superalloy René 88 DT has been investigated at room temperature with fully reversed loading in an ultrasonic fatigue apparatus operating at a frequency close to 20 kHz. A characterization protocol based on the electron backscatter diffraction technique has been developed to identify the combination of microstructural features within crack initiation sites and surrounding neighborhoods that leads to the transition from initiation to early small crack growth. Surface grains that were more than three times the average grain size, that were favorably oriented for cyclic slip localization and that also contained Σ3 twin boundaries inclined to the loading axis were most favorable for fatigue crack initiation. Fatigue cracks subsequently grew in grain clusters within which grains are misoriented by less than 20° relative to the initiation grains. More highly misoriented neighboring grains resulted in crack arrest. The material characteristics that promote crack initiation and small crack growth exist only at the extreme tails of the microstructural distributions. The implications for modeling of fatigue life and fatigue life variability are discussed.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,