Article ID Journal Published Year Pages File Type
788328 International Journal of Non-Linear Mechanics 2008 10 Pages PDF
Abstract

We consider the problem of bulging, or necking, of an infinite thin-walled hyperelastic tube that is inflated by an internal pressure, with the axial stretch at infinity maintained at unity. We present a simple procedure that can be used to derive the bifurcation condition and to determine the near-critical behaviour analytically. It is shown that there is a bifurcation with zero mode number and that the associated axial variation of near-critical bifurcated configurations is governed by a first-order differential equation that admits a locally bulging or necking solution. This result suggests that the corresponding bifurcation pressure can be identified with the so-called initiation pressure which featured in recent experimental studies. This is supported by good agreement between our theoretical predictions and one set of experimental data. It is also shown that the Gent material model can support both bulging and necking solutions whereas the Varga and Ogden material models can only support bulging solutions. Relevance of the present method to the study of non-linear wave propagation in a fluid-filled distensible tube is also discussed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,