Article ID Journal Published Year Pages File Type
7883866 Cement and Concrete Composites 2018 13 Pages PDF
Abstract
Strain-hardening ductile fiber-reinforced geopolymer composite, named Engineered Geopolymer Composite (EGC), is a promising material for achieving green and durable civil infrastructure. Despite increasing attentions of the unique material, inefficient trial-and-error approaches are often employed in the material design, which slows the research and development. This paper proposed a new design methodology of EGC that integrates three design techniques: Design of Experiment (DOE), micromechanical modeling, and Material Sustainability Indices (MSI). The mix design of a preliminary version of EGC was optimized to achieve higher compressive strength, maintain high tensile ductility, and enhance the material greenness simultaneously. With the aid of the systematic design process, an optimized EGC with improved compressive strength of 43.1 MPa and high tensile ductility of 4.7% was developed, while achieving 11% less embodied energy and 55% less CO2 equivalent emissions compared with a standard Engineered Cementitious Composite (ECC). Therefore, the applicability and effectiveness of the proposed design method were successfully demonstrated.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,