Article ID Journal Published Year Pages File Type
7886203 Ceramics International 2018 7 Pages PDF
Abstract
Porous mullite-corundum refractory ceramics were produced by a patented slurry slip casting method from compositions based on commercially available α-Al2O3 and γ-Al2O3, fused SiO2 and kaolin. Pores were formed as a result of a chemical reaction of aluminium with water. The influence of usage of raw materials and doping additives such as micro-size ZrO2 and WO3 on the sintering temperature, formation of crystalline phases, linear thermal expansion, thermal conductivity and thermal shock resistance of mullite-corundum ceramic was studied. The best thermal shock resistance and, simultaneously, lower thermal conductivity was achieved for the samples doped with WO3. This was due to the influence of micro-sized WO3 on the change in γ-Al2O3 modification to α-Al2O3 and on the structure of mullite ceramics.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,