Article ID Journal Published Year Pages File Type
7886224 Ceramics International 2018 18 Pages PDF
Abstract
The TiO2 hollow spheres were synthesized using a green, cheap, and easy process, in which carbonaceous spheres were chosen as the removable template. The prepared materials were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), Atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) analysis. According to the results, the obtained mesoporous TiO2 hollow spheres demonstrated an external diameters less than 200 nm with shell thickness around 40 nm. The antibacterial activities of the TiO2 hollow spheres were evaluated against gram-positive (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa). No antibacterial activity was found for TiO2 hollow spheres in the used concentrations. TiO2 hollow spheres were loaded with gentamycin as a selected antibiotic to magnify their benefits in biomedical applications. TiO2 hollow spheres exhibited good antibiotic carrier activity for the direct delivery of gentamicin, which was attributed to interaction between gentamicin and surface due to their larger specific surface area, more abundant porous structure, and their spherical morphology. The application of TiO2 hollow spheres as gentamicin carrier undoubtedly opens an avenue to use hollow sphere materials in other drug delivery applications.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,