Article ID Journal Published Year Pages File Type
7886264 Ceramics International 2018 9 Pages PDF
Abstract
Currently, perovskite structures have had an important impact in the development of gas sensors. In this work, perovskite LaCoO3 nanoparticles were synthesized by a simple, economic and reproducible processing by the solution method. The reactive precursors were nitrates of lanthanum and cobalt, using ethylenediamine as a chelating agent and distilled water as solvent. The gel formed by the solvent evaporation (through microwave radiation) was dried at 200 °C and later calcined at 300, 400, 500, 600, and 700 °C for 5 h. The samples were analyzed by X-ray diffraction, infrared spectroscopy, thermogravimetry, scanning, transmission, and atomic force microscopies, and nitrogen physisorption. These analyses confirmed the formation of LaCoO3 nanoparticles (size ~ 47 nm) at relatively low temperatures. The particles showed a continuous connectivity, generating a porous surface with a fibrous appearance. Starting with the synthesized powders, pellets were made and tested as gas sensors in carbon monoxide and propane atmospheres (at concentrations of 0-300 ppm) at different temperatures (25, 150, 250, and 350 °C). The nanoparticles presented high sensitivity, with a greater response in the propane atmosphere.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,