Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7886769 | Ceramics International | 2018 | 9 Pages |
Abstract
Magnetoelectrics are materials that join magnetic and electric orderings in the same phase. They exhibit magnetoelectric coupling which is important from the fundamental and practical point of view. The subject of the paper is a presentation of magnetic, electric and magnetoelectric properties of 0.5BiFeO3-0.5Pb(Fe0.5Nb0.5)O3 solid solution. The obtained material belongs to oxide perovskite magnetoelectrics of relatively high magnetic and electric ordering temperatures. Both temperatures are considerably above room what suggests potential application possibilities of the material. The magnetic properties were investigated using Mössbauer spectroscopy and magnetization measurements. The solid solution is an antiferromagnet with incomplete compensated magnetic moments. The electrical properties were determined using impedance spectroscopy analysis. There is an observed change of the electrical properties at the magnetic ordering temperature what indicates magnetoelectric coupling in the system. The electrical conductivity mechanism is also proposed. Magnetoelectric voltage coefficient was determined and possible explanation of its changes was proposed.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Agata Stoch, Pawel Stoch,