Article ID Journal Published Year Pages File Type
7887938 Ceramics International 2018 5 Pages PDF
Abstract
We present a laser-assisted preparation of transparent europium-titanate Eu2Ti2O7 thin films with tailored structural and optical properties. We have evaluated the effects of the irradiation time on the structural and the optical properties of the films. This approach allows the preparation of nanocrystalline crack-free films and micro patterns. The amorphous thin films were prepared by a sol-gel method. The films were annealed by a CO2 laser beam for various time intervals. The laser irradiation induced a crystallization process that resulted in the formation of Eu2Ti2O7 nanocrystals. The nanocrystals regularly grew with increasing irradiation time reaching the size from 25 nm to 45 nm. A film of a thickness 480 nm exhibited an optical transmission of 91.9% that is close to the maximal theoretical limit. The film's refractive index at 632 nm was 2.26. A micrometric pattern was prepared by a direct laser writing followed by a wet chemical etching. Feasibility of the demonstrated approach, together with the high film's quality, and europium-titanate chemical resistivity open up many opportunities for advanced applications. The approach can be used for a preparation of protective coatings and integrated photonic devices such as planar optical waveguides and couplers.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,