Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7888118 | Ceramics International | 2018 | 6 Pages |
Abstract
ZrSi2-SiC/SiC coating was prepared on the surface of high temperature gas-cooled reactor (HTR) matrix graphite spheres by two-step pack cementation and sintering process. The microstructure, oxidation resistance and thermal shock resistance properties of the as-prepared coatings with different original powder mixtures were investigated. Results show that dense microstructure of the ZrSi2-SiC/SiC coating and continuous ZrSiO4-SiO2-ZrO2 glass phase generated during the oxidation process were the key factors for the outstanding thermal properties. When the mole ratio of Zr:Si:C reaches 1:7:3 in the second pack cementation powders, the coated graphite spheres have optimum oxidation resistant ability. The weight gain is only 0.6 wt% after 15 times thermal shock tests and 0.12 wt% after isothermal oxidation test at 1500 °C for 20 h in air. The oxidation resistant mechanism of the coating was also discussed. The dense inner SiC layer and the outer glass layer generated during the oxidation process could protect the ZrSi2-SiC/SiC coating from further oxidation.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Zujie Zheng, Hongsheng Zhao, Ziqiang Li, Xiaoxue Liu, Bin Wu, Bing Liu,