Article ID Journal Published Year Pages File Type
7888459 Ceramics International 2018 8 Pages PDF
Abstract
In this work, hierarchical structure Nd10W22O81 nanowires are successfully prepared by a feasible electro-spinning technique followed by heat treatment. The structure, morphology and electrochemical characteristics of Nd10W22O81 nanowires are investigated and compared with Nd10W22O81 particles fabricated by a high temperature solid state reaction. It can be observed that Nd10W22O81 nanowires display a “nanoparticle-in-nanowire” architecture. For comparison, solid state formed Nd10W22O81 is composed of irregular microsized particles. This hierarchical architecture makes Nd10W22O81 nanowires have higher Li-storage capacity and better rate performance, contributing to the larger ion channels and shorter ion transportation pathways. In addition, an in-situ X-ray diffraction investigation is also operated to study the structural evolution and reaction mechanism during the charge/discharge process. All these evidences indicate that hierarchical structure Nd10W22O81 nanowires could be a potential high capacity anode material for rechargeable lithium-ion batteries.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , ,