Article ID Journal Published Year Pages File Type
7889174 Ceramics International 2018 28 Pages PDF
Abstract
Porous cobalt oxide (Co3O4) nanocubes (NCs) were synthesized by a simple and cost-effective hydrothermal technique for the potential application of electrochemical supercapacitors. The hydrothermally synthesized materials exhibited the small cube like morphology with the average size of ~ 50 to 60 nm. The surface analysis revealed a good surface area, and high pore volume of the synthesized porous Co3O4 NCs. The capacitive properties of porous Co3O4 NCs electrode were investigated by cyclic voltammetry (CV) in 6 M KOH electrolyte and a high specific capacitance of ~ 430.6 F/g at a scan rate of ~ 10 mV s−1 was observed. The capacity retention of up to ~ 85% after 1000 cycles was shown by the fabricated porous Co3O4 NCs electrode. The porous Co3O4 NCs showed excellent structural stability through cycling with promising capacity retention which suggested a good quality of porous Co3O4 NCs as electrochemical supercapacitor electrode.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,