Article ID Journal Published Year Pages File Type
7889554 Composites Part A: Applied Science and Manufacturing 2018 29 Pages PDF
Abstract
Flow properties are investigated for a non-crimp glass fabric with large meso-channels designed for high-permeability, as compared to glass twill woven fabric. Saturated and unsaturated permeability are measured through in-plane, unidirectional, constant-pressure flow experiments. Capillary effects are evaluated following a novel approach based on the ratio of unsaturated and saturated permeability for a set of experiments conducted at capillary numbers varying over a large range from ∼4·10-5 to 4·10-1. The mesoscopic pore-space of the compacted fabrics is imaged with X-ray Tomography, and analyzed to propose permeability predictions based on the channels geometry, which correspond well to experimental results. Permeability is governed by viscous flow in the meso-channels. As a result, provided that the capillary number exceeds a threshold value, the permeability can be rather accurately measured in these dual-scale fabrics by carrying out unsaturated measurements, neglecting micro-flow and capillary effects.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,