Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7889762 | Composites Part A: Applied Science and Manufacturing | 2018 | 44 Pages |
Abstract
In future fusion reactors, tungsten is a main candidate material for plasma-facing components. However, the intrinsic brittleness of tungsten is an issue under the extreme fusion environment. To overcome this drawback, tungsten fiber-reinforced tungsten (Wf/W) composites are being developed relying on an extrinsic toughening principle. In this study Wf/W composites are produced by a Field-Assisted Sintering Technology (FAST) process with different fiber-matrix interfaces. The fracture behavior was studied by 3-point bending tests on notched samples. 4-point bending tests and tensile tests are performed to measure the flexural strength and tensile strength, respectively. Wf/W with a weak interface shows a typical pseudo-ductile fracture behavior, similar to ceramic matrix composites. A strong interface is beneficial to achieve higher flexural strength and tensile strength, but in turn, weakens the pseudo-ductile behavior.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Y. Mao, J.W. Coenen, J. Riesch, S. Sistla, J. Almanstötter, B. Jasper, A. Terra, T. Höschen, H. Gietl, Ch. Linsmeier, C. Broeckmann,