Article ID Journal Published Year Pages File Type
7889887 Composites Part A: Applied Science and Manufacturing 2018 37 Pages PDF
Abstract
DCPDCE/BADCy hybrid resin and BN fillers were performed to fabricate the thermally conductive BN/DCPDCE/BADCy composites. When the molar ratio of DCPDCE/BADCy was 0.4/0.6, the dielectric constant (ε) and dielectric loss tangent (tgδ) value of the DCPDCE/BADCy hybrid resin was decreased to 2.92 and 5.08 × 10−3, respectively. Impact and flexural strength was increased to 10.7 kJ/m2 and 100.7 MPa, respectively. And the heat-resistance index (THRI) was 201.6 °C. Furthermore, the thermally conductive coefficient (λ) of the BN/DCPDCE/BADCy composite with 30 wt% BN fillers was improved to 0.64 W/mK, about 3 times in comparison to that of pristine DCPDCE/BADCy hybrid resin. Compared to that of Maxwell and Russell models, our proposed thermally conductive model could predict the experimental λ values more precisely. THRI value was enhanced from 201.6 °C (Pristine DCPDCE/BADCy hybrid resin) to 206.6 °C. Moreover, the BN/DCPDCE/BADCy composite with 10 wt% BN presented the optimal impact strength (11.7 kJ/m2) and flexural strength (108.4 MPa).
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,