Article ID Journal Published Year Pages File Type
7890045 Composites Part A: Applied Science and Manufacturing 2016 6 Pages PDF
Abstract
An elastic-plastic interface model at finite deformations is utilized to investigate the irreversible delamination behavior of adhesive joints subjected to loading-delamination-unloading. The interface model accounts for the irreversible delamination in the fracture process zone induced by the localized plastic deformation and damage. The interfacial parameters in the cohesive model are obtained by fitting the available experimental data. Results suggest that the cohesive model can capture the irreversible delamination failure behavior observed in adhesively bonded joints during a loading-unloading cycle. The overall nonlinear response is dominated by the cohesive strength and initial damage displacement jump. Further, we also investigate the effect of the ductile mechanisms for the bulk layer on the competition between the plastic deformation of the bulk layer and the delamination of the interface. It is observed that the degradation of unloading stiffness is attributed to the inelastic behavior of the interface.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,