Article ID Journal Published Year Pages File Type
7890069 Composites Part A: Applied Science and Manufacturing 2016 10 Pages PDF
Abstract
Filtration of nanofillers into porous fabric media is still an issue during the preparation of advanced fiber-reinforced composites. The assessment of resin/multiwall carbon nanotube (MWCNT) flow, MWCNT filtration, and the cure monitoring of glass fiber/carbon nanotube-polyester composites by means of the measurement of the electrical resistance was introduced. The vacuum-assisted resin transfer molding technique was used. The electrical resistances measured over the span of a composite were qualitatively correlated with MWCNT flow and the degree of MWCNT filtration. It was found that while the complexity of the fabrics could likely introduce preferential deposition of MWCNTs, their filtration is mainly affected by their dispersion state in the resin suspension. Relationships among critical parameters such as the lengths and diameters of MWCNTs, the inter- and intra-tow dimensions of glass fabrics, the dispersion level of MWCNTs, and the viscosity of nanocomposite samples are discussed and correlated to the filtration, cure, and flow phenomena. We showed that our method can also serve as an early warning to obviate defects in the resulting composite.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,