Article ID Journal Published Year Pages File Type
7890383 Composites Part A: Applied Science and Manufacturing 2016 13 Pages PDF
Abstract
The tensile fatigue behavior of unidirectional carbon fiber-reinforced thermoplastic and thermosetting laminates was examined at room temperature. Tension-tension cyclic fatigue tests were conducted under load control at a sinusoidal frequency of 10 Hz to obtain stress-fracture cycles (S-N) relationship. The fatigue limits of carbon fiber-reinforced thermoplastic laminates (CF/PA6) and thermosetting laminates (CF/Epoxy) were found to be 28.0 MPa (48% of the tensile strength) and 56.2 MPa (63% of the tensile strength), respectively. Two types (in constant and incremental loading way) of loading-unloading low cycle fatigue tests were employed to investigate the modulus history of fatigue process for announcing the fatigue mechanism. The residual tensile strength of specimens that survived fatigue loading maintained with the increase of fatigue cycles and applied stress. Examination of the fatigue-loaded specimens revealed that the more flexible/ductile trend of resins and the formation of micro-cracks at the interface between fiber and matrix was facilitated during high fatigue loading (⩾fatigue limit stress), while no interfacial/matrix damage in resins was detected during low fatigue loading (
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,