Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7890478 | Composites Part A: Applied Science and Manufacturing | 2016 | 11 Pages |
Abstract
The development of Finite Element (FE) thermoforming simulations of tailored thermoplastic blanks, i.e. blanks composed of unidirectional pre-impregnated tapes, requires the characterisation of the composite tape under the same environmental conditions as forming occurs. This paper presents a novel approach for the characterisation of transverse tensile properties of unidirectional thermoplastic tapes using a Dynamic Mechanical Analysis (DMA) system in a quasi-static manner. The relevance of the presented method is assessed by testing, under the same environmental conditions, a control material with both a universal testing machine and a DMA system. For simulation purposes, a unidirectional thermoplastic tape is characterised under environmental forming conditions using the presented test method. Experimental results, which include stress-strain behaviour and transverse viscosity, are eventually used to identify, via an inverse approach, simulation parameters of a thermo-visco-elastic composite material model (MAT 140, PAM-Form, ESI Group). Comparisons between simulated and experimental results show good agreement.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
A. Margossian, S. Bel, R. Hinterhoelzl,