| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 7890505 | Composites Part A: Applied Science and Manufacturing | 2016 | 12 Pages |
Abstract
Spin-coating is used for the fabrication of nanocomposite thin films, consisting of carbon nanoparticles embedded in epoxy matrix, on Mylar substrate. The final thickness of the heat-cured film was measured as a function of the spinning speed and nanoparticle concentration. Multi-walled carbon nanotubes with carboxyl functionalization (MWCNT-COOH) or exfoliated graphite nanoplatelets (xGnP) were used as fillers. Experimental results were in good agreement with the predictions from a model that considered the rheology and flow behavior of the reinforced resin fluids on a rotating disk. The model was differentiated for Newtonian and non-Newtonian regime of the spinning polymer fluid. In case of non-Newtonian behavior of the epoxy resin at high particle concentrations, a semi-empirical approach was used to determine the model constants from rheology measurements. Results from this analysis also indicate how rheological and wetting properties of the nano-reinforced polymer fluids depend on the aspect ratio of the graphene nanoplatelets.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Marialaura Clausi, M. Gabriella Santonicola, Susanna Laurenzi,
