Article ID Journal Published Year Pages File Type
7891327 Composites Part A: Applied Science and Manufacturing 2016 38 Pages PDF
Abstract
A new fracture criterion able to predict crack onset and propagation at interfaces between solids is formulated, implemented in a computational code and applied to a particular problem in composites on a microscale. More specifically, this criterion is used to study the debond onset and propagation in mixed mode in the case of a single fibre subjected to a biaxial remote loading. The fracture criterion formulation is based on the Linear Elastic-(Perfectly) Brittle Interface Model (LEBIM) combined with a Finite Fracture Mechanics (FFM) approach, where the stress and energy criteria are suitably coupled. Each of these criteria is a necessary but not sufficient condition for crack onset and propagation. Two empirical mixed-mode fracture criteria are considered and tested: the interface fracture toughness law by Hutchinson and Suo and the quadratic stress criterion. The FFM + LEBIM approach developed offers an adequate characterization of the interface stiffness in contrast to the too restrictive, original LEBIM formulation.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,