Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7891559 | Composites Part A: Applied Science and Manufacturing | 2015 | 34 Pages |
Abstract
Carbon-based nanomaterials are great choice as reinforcement to Ultra-High Molecular-Weight Polyethylene (UHMWPE), with potential use in orthopedics. While high in-plane-stiffness and strength of these nanomaterials help in toughening, their weaker out-of-plane integrity offers lubrication. Present study investigates effect of aspect ratio of carbon nanotubes (CNT) on toughening and solid-lubrication efficiency of UHMWPE-matrix. A nominal 0.05-0.1Â wt.% of CNT addition increases hardness and elastic modulus of UHMWPE by 3-45% and 8-42%, respectively. Higher aspect ratio (HAR) CNTs are found more effective in improving hardness and modulus of UHMWPE. Wear rate and friction-coefficient also increase by 530% and 220%, respectively, while reinforced with HAR CNTs. Thermal analysis shows slight increase in crystallinity and stability of composite. HAR CNTs improve interfacial bonding with matrix, due to their morphological similarity to polymer chains, as compared to low aspect ratio CNT. Aspect ratio of CNTs significantly dominates strengthening and tribological behavior of UHMWPE.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
R. Manoj Kumar, Sandan Kumar Sharma, B.V. Manoj Kumar, Debrupa Lahiri,