Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7891601 | Composites Part A: Applied Science and Manufacturing | 2015 | 7 Pages |
Abstract
This paper presents the method for measurement of the adhesion force and fracture strength of the interface between ceramic particles and metal matrix in ceramic reinforced-metal matrix composites. Three samples with the following Cu to Al2O3 ratio (in vol.%) were prepared: 98.0Cu/2.0Al2O3, 95.0Cu/5.0Al2O3 and 90Cu/10Al2O3. Furthermore, microwires which contain a few ceramic particles were produced by means of electro etching. The microwires with clearly exposed interface were tested with use of the microtensile tester. The microwires usually break exactly at the interface between the metal matrix and ceramic particle. The force and the interface area were carefully measured and then the fracture strength of the interface was determined. The strength of the interface between ceramic particle and metal matrix was equal to 59 ± 8 MPa and 59 ± 11 MPa in the case of 2% and 5% Al2O3 to Cu ratio, respectively. On the other hand, it was significantly lower (38 ± 5 MPa) for the wires made of composite with 10% Al2O3.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Dariusz M. JarzÄ
bek, Marcin Chmielewski, Tomasz Wojciechowski,