Article ID Journal Published Year Pages File Type
789167 International Journal of Plasticity 2011 10 Pages PDF
Abstract

We report results of uniaxial compression tests on Zr35Ti30Co6Be29 metallic glass nano-pillars with diameters ranging from ∼1.6 μm to ∼100 nm. The tested pillars have nearly vertical sidewalls, with the tapering angle lower than ∼1° (diameter >200 nm) or ∼2° (diameter ∼100 nm), and with a flat pillar top to minimize the artifacts due to imperfect geometry. We report that highly-localized-to-homogeneous deformation mode change occurs at 100 nm diameter, without any change in the yield strength. We also find that yield strength depends on size only down to 800 nm, below which it remains at its maximum value of 2.6 GPa. Quantitative Weibull analysis suggests that the increase in strength cannot be solely attributed to the lower probability of having weak flaws in small samples – most likely there is an additional influence of the sample size on the plastic deformation mechanism.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,