Article ID Journal Published Year Pages File Type
7891746 Composites Part A: Applied Science and Manufacturing 2015 10 Pages PDF
Abstract
Liquid composite molding (LCM) is a method to manufacture fiber-reinforced composites, where dry fabric reinforcement is impregnated with a resin in a molding apparatus. However, the inherent process variability changes resin flow patterns during mold filling, which in turn may cause void formation. We propose a method to reconstruct three-dimensional resin flow in LCM, without embedding sensors into the composite structure. Capacitance measured from pairs of electrodes on molding tools and the stochastic simulation of resin flow during an LCM process are integrated by a sequential data assimilation method based on the ensemble Kalman filter; then, three-dimensional resin flow and permeability distribution are estimated simultaneously. The applicability of this method is investigated by numerical experiments, characterized by different spatial distributions of permeability. We confirmed that changes in resin flow caused by spatial permeability variations could be captured and the spatial distribution of permeability could be estimated by the proposed method.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,