Article ID Journal Published Year Pages File Type
7891998 Composites Part A: Applied Science and Manufacturing 2015 11 Pages PDF
Abstract
This work investigated the ability of graphene nanoplatelets (GnPs) to improve the interlaminar mechanical properties of glass-reinforced multilayer composites. A novel method was developed for the inclusion of GnPs into the interlaminar regions of plain-weave, glass fabric fiber-reinforced/epoxy polymer composites processed with vacuum assisted resin transfer molding. Flexural tests showed a 29% improvement in flexural strength with the addition of only 0.25 wt% GnP. At the same concentration, mode-I fracture toughness testing revealed a 25% improvement. Additionally, low-velocity drop weight impact testing showed improved energy absorption capability with increasing concentration of GnPs. Ultrasonic C-scans and dye penetration inspection of the impact- and back-sides of the specimens qualitatively support these results. Finally, the impact damage area was quantified from the C-scan data. These results showed that the impact-side damage area decreased with increasing concentration of GnP, while the back-side damage area increased.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,