Article ID Journal Published Year Pages File Type
7892147 Composites Part A: Applied Science and Manufacturing 2015 11 Pages PDF
Abstract
In this study we investigate the tensile behaviour of unidirectional and cross-ply composites reinforced with ductile stainless steel fibres and modified adhesion to the epoxy matrix. Results show that annealed stainless steel fibres have a potential in designing tough polymer composites for structural applications. The stiffness of the UD composites made from these fibres is 77GPa combined with the strain-to-failure between 15% and 18% depending on the level of adhesion. Silane treatments were used to modify the adhesion. By treating the stainless steel fibres with different silane coupling agents, an increase of 50% in the transverse 3-point-bending strength was realised. Increasing the adhesion by 50% leads to a higher tensile strength and strain-to-failure in both UD and cross-ply laminates and a higher in-situ strength of the 90° plies. It also delays formation of matrix cracks and hinders growth of debonding.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,