Article ID Journal Published Year Pages File Type
789221 International Journal of Plasticity 2006 28 Pages PDF
Abstract

The quasi-static and dynamic compressive behavior of pyramidal truss cores made of 304 stainless steel were investigated using a combination of experimental techniques. Quasi-static tests were performed using a miniature loading stage while a Kolsky bar apparatus was used to investigate intermediate deformation rates. High deformation rates were examined using a light gas gun. Optical imaging of the sample deformation was performed in real time by means of high-speed photography. In this article, we provide a quantification of load-deformation response and associated failure modes across the sample as captured by high-speed photography. A finite element model is formulated and thorough simulations performed to understand the roles of material strain rate hardening and structural microinertia. Deformation modes were identified from acquired images, force-deformation histories and numerical modeling. Comparison between force-deformation histories under quasi-static and Kolsky bar loading reveals a moderate microinertia effect as manifested by a small increase in peak compressive stress. At high deformation rates, gas gun experiments, a totally different deformation mode is manifested with a major increase in peak compressive stress. In this case, the inertia associated to the bending and buckling of truss struts played a significant role. This effect appears to dominate the early truss core response because of two effects: (i) the propagation of a plastic wave along the truss members; (ii) buckling induced lateral motion. These findings are consistent with prior theoretical and computational work carried out by Vaughn et al. (2005) [Vaughn, D. Canning, M., Hutchinson, J.W., 2005. Coupled plastic wave propagation and column buckling. Journal of Applied Mechanics 72 (1), 1–8]. At larger deformations, the material strain rate hardening contribution to the total energy is as pronounced as the contribution arising from microinertia effect.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,