Article ID Journal Published Year Pages File Type
7892553 Composites Part A: Applied Science and Manufacturing 2013 11 Pages PDF
Abstract
Epoxy resin modified with nanofillers cannot be used alone for high performance structural applications due to their low-mechanical properties. Therefore, the objective of this work is to hybridize unidirectional and quasi-isotropic glass fiber composite laminates with 1.0 wt% multi-walled carbon nanotubes (MWCNTs). Results from flexural and damping characterizations showed that the flexural strength and modulus, storage modulus, and damping ratio of MWCNT/E nanocomposite are improved by about 7% ± 1.5% compared to neat epoxy. The enhancement in the flexural strength of quasi-isotropic laminate (20.7%) is about ten times higher than that for unidirectional laminate (2.1%). The flexural moduli of the nano-hybridized laminates are reduced by about 7.5-10.8%. Accordingly, the ultimate failure strain and damping properties are evidently improved. The improvement in damping ratio in some cases is about 100%. The high correlation coefficient (0.9995) between flexural and storage moduli suggests using the dynamic nondestructive tests for evaluation the elastic properties of composites.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,