Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7892566 | Composites Part A: Applied Science and Manufacturing | 2013 | 8 Pages |
Abstract
A new approach and material architecture is presented in order to overcome the inherent brittleness and unstable failure characteristic of conventional high performance composites. The concept is the use of thin-ply hybrid laminates. Fracture mechanics calculations were carried out to determine the critical carbon layer thickness for stable pull-out in a three layer unidirectional hybrid laminate, which can provide a pseudo-ductile failure. Unidirectional hybrid composites were fabricated by sandwiching various numbers of thin carbon prepreg plies between standard thickness glass prepreg plies and tested in tension. Specimens with one and two plies of thin carbon prepreg produced pseudo-ductile failure, whereas ones with three and four plies failed with unstable delamination. An explanation of the different failure modes is given in terms of the different energy release rates for delamination in various specimens. The observed damage characteristics agreed well with the expectations according to the estimated critical carbon layer thickness.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Gergely Czél, M.R. Wisnom,