Article ID Journal Published Year Pages File Type
7892922 Composites Part A: Applied Science and Manufacturing 2013 9 Pages PDF
Abstract
The modeling of thermal behavior of composite parts during their forming requires an accurate knowledge of their thermo-physical properties. Because of the heterogeneous nature of composites, the thermal conductivity tensor appears to be the most tricky to determine experimentally but also to model. A wide range of experimental methods can be found in the literature in order to measure either in-plane or transverse conductivity of composite parts, but very few succeed in performing it on dry preform or uncured laminates. In this study, the effective thermal conductivity tensor of carbon/epoxy laminates is investigated experimentally in the three states of a typical LCM-process: dry-reinforcement, raw and cured composite. Samples are made of twill-weave carbon fabric impregnated with epoxy resin. The transverse thermal conductivity is determined using a classical estimation algorithm, whereas a special testing apparatus is designed to estimate in-plane conductivity for different temperatures and different states of the composite. Experimental results are then compared to modified Charles & Wilson and Maxwell models. The fiber crimping of a ply is also taken into account in modeling. The comparison shows clearly that these models can be used to predict the effective thermal conductivities of woven-reinforced composites provided that the material properties are well known.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,