Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7892922 | Composites Part A: Applied Science and Manufacturing | 2013 | 9 Pages |
Abstract
The modeling of thermal behavior of composite parts during their forming requires an accurate knowledge of their thermo-physical properties. Because of the heterogeneous nature of composites, the thermal conductivity tensor appears to be the most tricky to determine experimentally but also to model. A wide range of experimental methods can be found in the literature in order to measure either in-plane or transverse conductivity of composite parts, but very few succeed in performing it on dry preform or uncured laminates. In this study, the effective thermal conductivity tensor of carbon/epoxy laminates is investigated experimentally in the three states of a typical LCM-process: dry-reinforcement, raw and cured composite. Samples are made of twill-weave carbon fabric impregnated with epoxy resin. The transverse thermal conductivity is determined using a classical estimation algorithm, whereas a special testing apparatus is designed to estimate in-plane conductivity for different temperatures and different states of the composite. Experimental results are then compared to modified Charles & Wilson and Maxwell models. The fiber crimping of a ply is also taken into account in modeling. The comparison shows clearly that these models can be used to predict the effective thermal conductivities of woven-reinforced composites provided that the material properties are well known.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Maxime Villière, Damien Lecointe, Vincent Sobotka, Nicolas Boyard, Didier Delaunay,