Article ID Journal Published Year Pages File Type
7893674 Corrosion Science 2018 5 Pages PDF
Abstract
The microstructure evolution of a FeNiCr alloy oxidized at 600 °C by simultaneously applying stress via high temperature nanoindentation is reported. Analysis using transmission electron microscopy shows that a sharp crack was induced beneath the indentation area under the stress-oxidation coupling condition. Nanotwins beneath the indentation area were also observed, which acted as a barrier that ceased the crack propagation beneath the indenter by altering the path of the crack. Results reveal a transformation from inter-granular crack propagation along the oxide grain boundaries to intra-granular crack propagation through the nanotwin structure with a zig-zag pattern.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,